

Synthesis of Asymmetric Peroxides: Transition Metal (Cu, Fe, Mn, Co) Catalyzed Peroxidation of β-Dicarbonyl Compounds with *tert*-Butyl Hydroperoxide

Alexander O. Terent'ev,*,† Dmitry A. Borisov,† Ivan A. Yaremenko,† Vladimir V. Chernyshev,^{#§} and Gennady I. Nikishin[†]

[†]N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation, ‡ Department of Chemistry, Moscow State University, 119992 Moscow, Russian Federation, and [§]A. N. Frumkin Institute of Physical Chemistry and Electrochemistry, 31 Leninsky prosp., 119991 Moscow, Russian Federation

terentev@ioc.ac.ru

Received April 26, 2010

The transition metal (Cu, Fe, Mn, Co) catalyzed peroxidation of β -dicarbonyl compounds at the α position by *tert*-butyl hydroperoxide was discovered. A selective, experimentally convenient, and gram-scale method was developed for the synthesis of α -peroxidated derivatives of β -diketones, β-keto esters, and diethyl malonate. Virtually stoichiometric $(2-3/1)$ molar ratios of tert-butyl hydroperoxide and a dicarbonyl compound were used in the reactions with β-diketones and β-keto esters. The target compounds were synthesized in the highest yields from β -keto esters (45-90%) and in somewhat lower yields from β -diketones (46-75%) and malonates (37-67%).

Introduction

In the past decades, organic peroxides have received considerable attention from chemists and drug design experts because of their potential as drugs for the treatment of parasitic diseases, such as malaria^{1,2} and helminth infections.³ Considerable progress has been made in the design of effective peroxide antimalarial drugs. Thus, the natural peroxide artemisinin and its semisynthetic derivatives are widely used in medicine. Some synthetic peroxides exhibit activity equal to

 $© 2010$ American Chemical Society

or higher than that of artemisinin.⁴ Peroxides having antitumor⁵ or growth-regulatory activity⁶ were also documented.

^{(1) (}a) Jefford, C. W. Drug Discovery Today 2007, 12, 487–495. (b) Opsenica, D. M.; Solaja, B. A. J. Serb. Chem. Soc. 2009, 74, 1155–1193. (c) Kaur, K.; Jain, M.; Kaur, T.; Jain, R. *Bioorg. Med. Chem.* **2009**, 17, 3229–
3256. (d) Muraleedharan, K. M.; Avery, M. A. *Drug Discovery Today* **2009**, 14, 793–803. (e) O'Neil, P. M.; Posner, G. H. J. Med. Chem. 2004, 47, 2945– 2964. (f) Dong, Y. Mini-Rev. Med. Chem. 2002, 2, 113–123. (g) Borstnik, K.; Paik, Ik.-h.; Shapiro, T. A.; Posner, G. H. Int. J. Parasitol. 2002, 32, 1661– 1667. (h) Vennerstrom, J. L.; Fu, H.-N.; Ellis, W. Y.; Ager, A. L.; Wood, J. K.; Andersen, S. L.; Gerena, L.; Milhous, W. K. J. Med. Chem. 1992, 35, 3023–3027. (i) Dong, Y.; Matile, H.; Chollet, J.; Kaminsky, R.; Wood, J. K.; Vennerstrom, J. L. *J. Med. Chem.* **1999**, 42, 1477–1480. (j) Dussault, P. H.;
Lee, I. Q.; Lee, H. J.; Lee, R. J.; Niu, Q. J.; Schultz, J. A.; Zope, U. R. *J. Org*. Chem. 2000, 65, 8407–8414. (k) Gelb, M. H. Curr. Opin. Chem. Biol. 2007, 11, 440–445. (l) Tolstikov, G. A.; Tolstikov, A. G.; Tolstikova, O. V. Russ. Chem. Rev. 1996, 65, 769–783.

^{(2) (}a) Kumar, N.; Khan, S. I.; Rajalakshmi, B. G.; Kumaradhas, P.; Rawat, D. S. Bioorg. Med. Chem. 2009, 17, 5632–5638. (b) Kim, H.-S.; Shibata, Y.; Wataya, Y.; Tsuchiya, K.; Masuyama, A.; Nojima, M. J. Med. Chem. 1999, 42, 2604–2609. (c) Atheaya, H.; Khan, S. I.; Mamgain, R.; Rawat, D. S. Bioorg. Med. Chem. Lett. 2008, 18, 1446–1449. (d) Jin, H.-X.; Liu, H.-H.; Zhang, Q.;Wu, Y. *Tetrahedron. Lett.* **2005**, 46, 5767–5769. (e) McCullough, K. J.; Wood, J. K.; Bhattacharjee, A. K.; Dong, Y.; Kyle, D. E.; Milhous, W. K.; Vennerstrom, J. L.
J. Med. Chem. 2000, 43, 1246–1249. (f) Jin, H.-X.; Zhang, Bonnet-Delpon, D.; Begue, J.-P. Tetrahedron Lett. 2003, 44, 6309–6312. (h) Najjar, F.; Gorrichon, L.; Baltas, M.; André-Barrès, C.; Vial, H. Org. Biomol. Chem. 2005, 3, 1612–1614. (i) Solaja, B. A.; Terzic, N.; Pocsfalvi, G.; Genena, L.; Tinant, B.; Opsenica, D.; Milhous, W. K. J. Med. Chem. 2002, 45, 3331–3336. (j) Ellis, G. L.; Amewu, R.; Hall, C.; Rimmer, K.; Ward, S. A.; O'Neill, P. M.
Bioorg. Med. Chem. Lett. 2008, 18, 1720–1724. (k) Hamada, Y.; Tokuhara, H.; Masuyama, A.; Nojima, M.; Kim, H.-S.; Ono, K.; Ogura, N.; Wataya, Y. J. Med. Chem. 2002, 45, 1374–1378.

^{(3) (}a) Utzinger, J.; Shuhua, X.; N'Goran, E. K.; Bergquist, R.; Tanner, M. Int. J. Parasitol. 2001, 31, 1549–1562. (b) Shuhua, X.; Tanner, M.; N'Goran, E. K.; Utzinger, J.; Chollet, J.; Bergquist, R.; Chen, M.; Zheng, J. Acta Trop. 2002, 82, 175–181. (c) Keiser, J.; Brun, R.; Fried, B.; Utzinger, J. Antimicrob. Agents Chemother. 2006, 50, 803–805. (d) Keiser, J.; Xiao, S. H.; Tanner,M.; Utzinger, J. J. Antimicrob. Chemother. 2006, 57, 1139-1145. (e) Keiser, J.; Utzinger, J.; Tanner, M.; Dong, Y.; Vennerstrom, J. L. J. Antimicrob. Chemother. 2006, 58, 1193–1197. (f) Keiser, J.; Xiao, S.-H.; Dong, Y.; Utzinger, J.; Vennerstrom, J. L. J. Parasitol. 2007, 93, 1208–1213.

JOC $\operatorname{Article}$ $\operatorname{Terent'ev}$ et al.

As a result of their availability and high efficiency, organic peroxides play a leading part as radical polymerization initiators in the industrial synthesis of such polymeric materials as polyacrylates, polystyrene, styrene-containing rubbers, and high-pressure polyethylene and are also used as crosslinking agents.

The design of peroxide-based explosives is of particular interest. Triacetone triperoxide is one of the most sensitive known explosives with an explosive power similar to that of trinitrotoluene.⁷ Peroxide derivatives of other lower ketones and aldehydes can also be of interest as high-energy substances.

The present study is a continuation of our research on the peroxidation of β-dicarbonyl compounds.⁸ It was found for the first time that transition metals (Cu, Fe, Mn, and Co) catalyze the selective peroxidation of β -dicarbonyl compounds at the α position by *tert*-butyl hydroperoxide.

The transition metal (Cu, Mn, Co)/hydroperoxide system was used for the first time by Kharasch in the synthesis of peroxides from alkenes, ketones, and tertiary amines more than six decades ago.⁹ Since that time, the research on and application of this peroxidation method have been documented in numerous publications. The formation of peroxides has been observed in various reactions of hydroperoxides

Bioorg. Med. Chem. Lett. 2004, 14, 459–462.

(5) (a) Dembitsky, V. M.; Gloriozova, T. A.; Poroikov, V. V. *Mini-Rev.* Med. Chem. 2007, 7, 571–589. (b) Jung, M.; Kim, H.; Lee, K.; Park, M. Mini-Rev. Med. Chem. **2003**, 3, 159–165. (c) Kim, J.; Park, E. J. Curr. Med. Chem.
Anticancer Agents **2002**, 2, 485–537. (d) Dembitsky, V. M. *Eur. J. Med.*
Chem. **2008**, 43, 223–251. (e) Dembitsky, V. M.; Gloriozova, T. A.; Po V. V. *Mini-Rev. Med. Chem.* **2005**, 5, 319–336. (f) Terzić, N.; Opsenica, D.; Milić, D.; Tinant, B.; Smith, K. S.; Milhous, W. K.; Šolaja, B. A. *J. Med.* Chem. 2007, 50, 5118–5127. (g) Opsenica, D.; Kyle, D. E.; Milhous, W. K.; Šolaja, B. A. *J. Serb. Chem. Soc.* 2003, 68, 291–302. (h) Žižak, Ž.; Juranić, Z.; Opsenica, D.; Šolaja, B. A. *Invest. New Drugs* 2009, 27, 432–439.
(6) (a) Barbosa, L. C. A.; Maltha, C. R. A.; Cusati, R. C.; Teixeira, R.

Rodrigues, F. F.; Silva, A. A.; Drew, M. G. B.; Ismail, F. M. D. J. Agric. Food Chem. 2009, 57, 10107-10115. (b) Macías, F. A.; Chinchilla, N.; Varela, R. M.; Molinillo, J. M. G. *Steroids* **2006**, 71, 603–608. (c) Barbosa, L. C. A.;
Pereira, U. A.; Teixeira, R. R.; Maltha, C. R. A.; Fernandes, S. A.; Forlani, G. J. Agric. Food Chem. 2008, 56, 9434–9440. (d) Chen, P. K.; Leather, G. R. J. Chem. Ecol. 1990, 16, 1867–1876.

(7) (a) Dubnikova, F.; Kosloff, R.; Almog, J.; Zeiri, Y.; Boese, R.; Itzhaky, H.; Alt, A.; Keinan, E. J. Am. Chem. Soc. 2005, 127, 1146–1159. (b) Meyer, R. Explosives; Verlag Chemie: Weinheim, NY, 1977. (c) Denekamp, C.; Gottlieb, L.; Tamiri, T.; Tsoglin, A.; Shilav, R.; Kapon, M. Org. Lett. 2005, 7, 2461–2464. (d) Muller, D.; Levy, A.; Shelef, R.; Abramovich-Bar, S.; Sonenfeld,
D.; Tamiri, T. *J. Forensic Sci.* **2004**, 49, 935–938. (e) Fialkov, A. B.; Amirav, A. Rapid Commun. Mass Spectrom. 2003, 17, 1326–1338. (f) Schulte-Ladbeck, R.; Kolla, P.; Karst, U. Analyst 2002, 127, 1152–1154. (g) Widmer, L.; Watson, S.; Schlatter, K.; Crowson, A. Analyst 2002, 127, 1627–1632. (h) Yavari, I.; Hosseini-Tabatabaei, M. R.; Nasiri, F. THEOCHEM 2001, 538, 239–244.

(8) Terent'ev, A. O.; Borisov, D. A.; Chernyshev, V. V.; Nikishin, G. I. J. Org. Chem. 2009, 74, 3335–3340.

(9) (a) Kharasch, M. S.; Pauson, P.; Nudenberg, W. J. Org. Chem. 1953, 18, 322–327. (b) Kharasch, M. S.; Fono, A. J. Org. Chem. 1958, 23, 324–325. (c) Kharasch, M. S.; Fono, A. J. Org. Chem. 1959, 24, 72–78.

(10) (a) Shul'pin, G. B.; Gradinaru, J.; Kozlov, Y. N. Org. Biomol. Chem. 2003, 1, 3611–3617. (b) Araneo, S.; Fontana, F.; Minisci, F.; Recupero, F.; Serri, A. J. Chem. Soc., Chem. Commun. 1995, 1399–1400. (c) Bravo, A.; Bjørsvik, H.-R.; Fontana, F.; Liguori, L.; Minisci, F. J. Org. Chem. 1997, 62, 3849–3857. (d) Meder, M. B.; Gade, L. H. *Eur. J. Inorg. Chem.* **2004**, 2716–
2722. (e) Vida, J. A.; Samour, C. M.; O'Dea, M. H.; Wang, T. S. T.;
Reinhard, J. F. *J. Med. Chem.* **1974**, 17, 1194–1197. (f) Li, Z.; Li, C.-J. J. Am. Chem. Soc. 2005, 127, 6968–6969. (g) Punniyamurthy, T.; Rout, L. Coord. Chem. Rev. 2008, 252, 134–154.

⁵⁰⁶⁶ J. Org. Chem. Vol. 75, No. 15, 2010

catalyzed by metal salts and their complexes: copper, ¹⁰ cobalt, ¹¹ and iron,¹² including Gif¹³ and metalloporphyrin¹⁴ catalysis. Peroxides were synthesized in high yields by the peroxidation of amines, amides, and lactams catalyzed by ruthenium salts.¹⁵

Hydroxylation reactions of $β$ -dicarbonyl compounds at the α position, which are related to the peroxidation discovered in the present study, were extensively studied in the past two decades. Generally, the oxidation was carried out with the use of peracids, 16 dimethyldioxirane, 17 hydrogen peroxide,¹⁸ or oxygen.¹⁹ In the studies with the use of oxygen, the formation of peroxide compounds was observed in the following cases: the oxidation of ring-containing β -diketones by singlet oxygen,^{19a} reactions with the use of the CeCl₃/O₂ system,^{19b} and reactions of nitrogen-containing heterocyclic compounds bearing a β-dicarbonyl fragment with the $Mn(OAc)₂/O₂$ system^{19c}

Results and Discussion

In the present study, we found that the transition metal (Cu, Co, Mn, Fe)/tert-butyl hydroperoxide system can be used for the peroxidation of β -dicarbonyl compounds at the α position. The peroxidation of β-dicarbonyl compounds occurs with high selectivity, does not require the use of a substantial excess of the reactants, and is easily scaled. α -Substituted β-keto esters 1a–f, β-diketones 2a,b,d,e,g,h, and β-diesters 3a,e,f,h were used as the starting compounds for the synthesis of target peroxides 4a-f, 5a,b,d,e,g,h, and 6a,e,f,h (Scheme 1).

In the context of this peroxidation reaction, it should be noted that in the past decade $β$ -dicarbonyl compounds have found use in oxidative coupling with alkanes, alkenes, amines,

Chem. Commun. 1994, 1823–1824. (14) Minisci, F.; Fontana, F.; Araneo, S.; Recupero, F.; Banfi, S.; Quici, S. J. Am. Chem. Soc. 1995, 117, 226–232.

(15) (a)Murahashi, S.-I.; Zhang, D. Chem. Soc. Rev. 2008, 37, 1490–1501. (b) Murahashi, S.-I.; Naota, T.; Kuwabara, T.; Saito, T.; Kumobayashi, H.;
Akutagawa, S. J. Am. Chem. Soc. 1990, 112, 7820–7822. (c) Murahashi, S.-I.;

Naota, T.; Yonemura, K. J. Am. Chem. Soc. 1988, 110, 8256-8258.
(16) (a) Heathcock, C. H.; Mahaim, C.; Schlecht, M. F.; Utawanit, T. J. Org. Chem. 1984, 49, 3264–3274. (b) Ancerewicz, J.; Vogel, P. Helv. Chim. Acta 1996, 79, 1393–1414. (c) Andriamialisoa, R. Z.; Langlois, N.; Langlois, Y. J. Org. Chem. 1985, 50, 961-967.

(17) (a) Adam, W.; Smerz, A. K. Tetrahedron 1996, 52, 5799–5804. (b) Barrett, A. G. M.; Head, J.; Smith, M. L.; Stock, N. S.; White, A. J. P.; Williams, D. J. J. Org. Chem. 1999, 64, 6005–6018. (c) Smith, A. M. R.; Billen, D.; Hii, K. K. (M.). *Chem. Commun.* **2009**, 3925–3927. (d) Smith, A. M. R.; Rzepa, H. S.; White, A. J. P.; Billen, D.; Hii, K. K. (M.). J. Org. Chem. 2010, 75, 3085–3096.

(18) (a) Li, D.; Schröder, K.; Bitterlich, B.; Tse, M. K.; Beller, M. Tetrahedron Lett. 2008, 49, 5976–5979. (b) Abu-Omar, M. M.; Espenson, J. H. Organometallics 1996, 15, 3543–3549.

(19) (a) Yoshioka, M.; Nishioka, T.; Hasegawa, T. J. Org. Chem. 1993, 58, 278–281. (b) Christoffers, J.; Werner, T.; Frey, W.; Baro, A. Eur. J. Org. Chem. 2003, 4879–4886. (c) Rahman, M. T.; Nishino, H. Org. Lett. 2003, 5, 2887–2890. (d) Irie, H.; Katakawa, J.; Tomita, M.; Mizuno, Y. Chem. Lett. 1981, 637–640. (e) Wasserman, H. H.; Pickett, J. E. J. Am. Chem. Soc. 1982, 104, 4695–4696. (f) Hiroya, K.; Ogasawara, K. Chem. Commun. 1999, 2197– 2198. (g) Watanabe, T.; Ishikawa, T. Tetrahedron Lett. 1999, 40, 7795–7798. (h) Christoffers, J. J. Org. Chem. 1999, 64, 7668–7669. (i) Baucherel, X.; Levoirier, E.; Uziel, J.; Juge, S. Tetrahedron Lett. 2000, 41, 1385–1387. (j) Richardson, A. M.; Chen, C.-H.; Snider, B. B. J. Org. Chem. 2007, 72, 8099–8102. (k) Monguchi, Y.; Takahashi, T.; Iida, Y.; Fujiwara, Y.; Inagaki, Y.; Maegawa, T.; Sajiki, H. Synlett 2008, 2291-2294.

^{(4) (}a) Ellis, G. L.; Amewu, R.; Sabbani, S.; Stocks, P. A.; Shone, A.; Stanford, D.; Gibbons, P.; Davies, J.; Vivas, L.; Charnaud, S.; Bongard, E.; Hall, C.; Rimmer, K.; Lozanom, S.; Jesús, M.; Gargallo, D.; Ward, S. A.; O'Neill, P. M. J. Med. Chem. 2008, 51, 2170–2177. (b) Amewu, R.; Stachulski, A. V.; Ward, S. A.; Berry, N. G.; Bray, P. G.; Davies, J.; Labat, G.; Vivas, L.; O'Neill, P. M. Org. Biomol. Chem. 2006, 4, 4431–4436. (c) Dong, Y.; Tang, Y.; Chollet, J.; Matile, H.; Wittlin, S.; Charman, S. A.; Charman, W. N.; Tomas, J. S.; Scheurer, C.; Snyder, C.; Scorneaux, B.; Bajpai, S.; Alexander, S. A.; Wang, X.; Padmanilayam, M.; Cheruku, S. R.; Brun, R.; Vennerstrom, J. L. Bioorg. Med. Chem. 2006, 14, 6368–6382. (d) Singh, C.; Malik, H.; Puri, S. K.

^{(11) (}a) Treibs, W.; Pellmann, G. Chem. Ber. 1954, 87, 1201–1205. (b) Saussine, L.; Brazi, E.; Robine, A.; Mimoun, H.; Fischer, J.; Weiss, R. J. Am. Chem. Soc. 1985, 107, 3534–3540.

^{(12) (}a) Leising, R. A.; Norman, R. E.; Que, L., Jr. *Inorg. Chem.* **1990**, 29, 2553–2555. (b) Leising, R. A.; Zang, Y.; Que, L., Jr. *J. Am. Chem. Soc.* **1991**, *113*, 8555–8557. (c) Kojima, T.; Leising, R. A.; Yan, S.; Q Chem. Soc. 1993, 115, 11328-11335. (d) Leising, R. A.; Kim, J.; Perez, M. A.; Que, L., Jr. J. Am. Chem. Soc. 1993, 115, 9524-9530. (e) Arends, I. W. C. E.; Ingold, K. U.; Wayner, D. D. M. J. Am. Chem. Soc. 1995, 117, 4710–4711. (13) Minisci, F.; Fontana, F.; Araneo, S.; Recupero, F. J. Chem. Soc.,

1a-c, e, f; 4a-c, e, f: R' = Me, R"' = OEt; 1d, 4d: R"' = OMe 2a, b, e, g, h; 5a, b, e, g, h: R' = R''' = Me; 2d, 5d: R''' = Me

3a, e, f, h; 6a, e, f, h: $R' = R''' = OEt$

a: $R'' = CH_2Ph$; **b**: $R'' = CH_2(4-NO_2Ph)$; **c**: $R'' = Bu$;

d: R', R" = $(CH_2)_4$; e: R" = $(CH_2)_2$ COCH₃; f: R" = $(CH_2)_2$ CN;

g: R" = $(CH_2)_2$ COOEt; h: R" = CH₂CH=CH₂

esters, and compounds containing the benzyl group.²⁰ In some studies, the coupling reactions were carried out with the use of tert-butyl hydroperoxide,^{20b-d} bis(tert-butyl) peroxide,^{20d} or tert-butyl perbenzoate^{20d,e} as oxidants in the presence of catalytic amounts of transition metal (Cu, Fe, Co) salts. As a result of the high selectivity of these reactions, the formation of peroxides of β -dicarbonyl compounds was observed in none of the studies. In this context, the coupling of β -dicarbonyl compounds with tert-butyl hydroperoxide that acts simultaneously as the oxidant and the second reaction component was unexpected.

The present study was performed in several steps. First, we examined the possibility of performing the peroxidation of these compounds by investigating the reactions of α -benzylsubstituted derivatives of acetoacetic ester 1a, acetylacetone 2a, and malonic ester 3a and optimized the reaction conditions (the reagent ratio, the nature of the catalyst, and the solvent). Then we synthesized a series of asymmetric peroxides with the aim of evaluating the scope of the reaction and preparing the previously unknown compounds.

We chose α -benzylacetoacetic ester 1a as one of the main reactants for the optimization of the conditions of peroxidation. This reactant contains two centers, CH and $PhCH₂$, active in oxidative reactions (Table 1). The reaction of ester 1a with tert-butyl hydroperoxide afforded α -benzyl- α -tertbutylperoxyacetoacetic ester 4a.

The reactions were performed with the copper salts Cu- $(OAc)_2 \cdot H_2O$, $Cu(ClO_4)_2 \cdot 6H_2O$, $Cu(BF_4)_2 \cdot 6H_2O$, $Cu(acac)_2$, CuCl, CuCl₂ \cdot 2H₂O, and CuSO₄ \cdot 5H₂O (entries 1-23), the manganese salt $Mn(OAc)_2 \cdot 4H_2O$ (entry 24), and the iron salts FeCl₃ and $Fe (acac)_3$ (entries 25 and 26). In all of the reactions presented in Table 1, the peroxidation occurred selectively at the CH fragment, whereas the benzyl $CH₂$ fragment remained intact.

According to entries 1-4, acetonitrile proved to be the solvent of choice for the peroxidation; neither acetic acid nor ethanol are suitable for this purpose.

In entries $5-10$, we evaluated the effect of the amount of the catalyst $Cu(OAc)_{2} \cdot H_{2}O$ (varied from 0.05 to 0.2 mol of the catalyst per mole of 1a) and the order of its addition on the conversion and the yield of the target peroxide 4a. The

Terent'ev et al. $\mathcal{J}(\mathcal{O}(\mathcal{A}|\mathcal{I}^{\text{int}}))$

best result was obtained under the conditions when one additional portion of the catalyst and tert-butyl hydroperoxide was added 30 min after the beginning of the reaction (entries 8 and 10). In these reactions, we achieved conversions of 94% and 85% and obtained compound 4a in 48% and 67% yield, respectively (with respect to the reactant used). Apparently, the repeated addition of the catalyst and tert-butyl hydroperoxide leads to a decrease in their consumption in side reactions.

Since we failed to achieve the complete conversion of diketone 1a and a high yield of 4a in the reactions catalyzed by $Cu(OAc)₂·H₂O$, the subsequent experiments (entries $11-18$) were performed with the use of other salts, such as Cu- $(CIO_4)_2 \cdot 6H_2O$ and $Cu(BF_4)_2 \cdot 6H_2O$ (with the strong electron-
withdrawing anion). In the reaction catalyzed by $Cu(CIO_4)_2 \cdot$ $6H₂O$, the complete conversion of dicarbonyl compound 1a was observed, and the target peroxide 4a was prepared in 90% yield (entries 13 and 14). Application of dry $\overline{Bu'}$ OOH practically has no effect on the yield of the peroxide 4a (entry 14, footnote d). The experiment with the use of $Cu(BF_4)_2 \cdot 6H_2O$ (entry 18) also gave a good result (yield of 4a was 79%). In the reactions catalyzed by the copper salts Cu(acac)₂, CuCl, CuCl₂ \cdot 2H₂O, and $CuSO₄·5H₂O$ (entries 19-23), the manganese salt Mn- $(OAc)_{2} \cdot 4H_{2}O$ (entry 24), and the iron salts FeCl₃, Fe(acac)₃ (entries 25 and 26), we did not obtain satisfactory results.

In addition to the experimental results presented in Table 1, we carried out reactions with the use of the salts $Co(OAc)_{2}$, $Co(CIO₄)₂·6H₂O$, $Co(acac)₂$, $CoCl₂·6H₂O$, $H₇[P(Mo₂O₇)₆] \cdot
*n*H₂O, and RuCl₃·*n*H₂O as the catalysts under the condi$ tions of the best experiment (entry 13). In the presence of Cocontaining catalysts, peroxide 4a was obtained only in trace amounts. The reactions catalyzed by Mo- or Ru-containing compounds did not afford 4a at all. The formation of peroxide 4a was not observed also in the reactions catalyzed by main-group metal perchlorates ($MgClO₄$ and $KClO₄$).

 α -Benzylacetylacetone 2a (the structural analogue of keto ester 1a) was also used for the optimization of the peroxidation with tert-butyl hydroperoxide. In this case, we obtained α -benzyl- α -tert-butylperoxyacetylacetone 5a (Table 2).

In this case, as in the peroxidation of keto ester 1a (Table 1), the copper salts $Cu(CIO₄)₂$ and $Cu(BF₄)₂$ proved to be the catalysts of choice (entries $2-8$). In these reactions, the complete conversion of 2a was achieved, and α -benzyl- α -tertbutylperoxyacetylacetone 5a was obtained in 73% (entry 6) and 69% (entry 8) yields. The main difference of the peroxidation of diketone 2a from that of keto ester 1a is that the cobalt salts $CoCl_2 \cdot 6H_2O$, $Co(acac)_2$, and $Co(ClO_4)_2 \cdot 6H_2O$ can also catalyze the peroxidation (entries $10-12$). The iron salts Fe(acac)₃ and FeCl₃ (entries 13 and 14) and the manganese salt $Mn(OAc)₂·4H₂O$ (entry 15) are ineffective as the catalysts.

In addition to the experiments presented in Table 2, we tested the catalysts $H_7[P(Mo_2O_7)_6] \cdot nH_2O$ and $RuCl_3 \cdot nH_2O$ under the optimized conditions (see entry 5). These catalysts proved to be ineffective in the peroxidation of diketone 2a.

On the whole, diketone 2a is characterized by higher reactivity compared to keto ester 1a. The peroxidation of 2a can be performed with the use of a wide range of metal salts and, under analogous reaction conditions, the complete conversion of $2a$ is achieved $2-4$ times faster compared to $1a$.

Diethyl α -benzylmalonate 3a (the structural analogue of 1a and 2a) was used as the third starting compound for the optimization of the conditions of peroxidation. The reaction of this

^{(20) (}a) Li, C.-J. Acc. Chem. Res. 2009, 42, 335–344. (b) Li, Z.; Li, C.-J. Am. Chem. Soc. 2006, 128, 56-57. (c) Yoo, W.-J.; Li, C.-J. J. Org. Chem. 2006, 71, 6266–6268. (d) Li, Z.; Cao, L.; Li, C.-J. Angew. Chem., Int. Ed. 2007, 46, 6505–6507. (e) Borduas, N.; Powell, D. A. J. Org. Chem. 2008, 73, 7822– 7825. (f) Correia, C. A.; Li, C.-J. Tetrahedron Lett. 2010, 51, 1172–1175.

TABLE 1. Transition Metal Salt Catalyzed Peroxidation of α -Benzylacetoacetic Ester 1a with tert-Butyl Hydroperoxide^a

"General reaction conditions. The catalyst $(0.05-0.2 \text{ mol per mole of } 1a)$ and a 70% aqueous Bu'OOH solution $(2-5 \text{ mol per mole of } 1a)$ were added to a solution of keto ester 1a (0.3 g, 1.36 mmol) in the solvent (CH₃CN, EtOH, or CH₃COOH) (5 mL). The reaction mixture was refluxed for 0.5–2 h (at a temperature from 79 to 119 °C). ^{*b*}The catalyst Cu(OAc)₂ · H₂ The first portion was added in the beginning of the experiment, and another portion was added 1 h (entry 8) or 30 min (entry 10) after the beginning of the reaction. ^cThe experiment was carried out under argon. ^dThe experiment was carried out with the use of dry Bu'OOH.

TABLE 2. Transition Metal Salt Catalyzed Peroxidation of α -Benzylacetylacetone 2a with tert-Butyl Hydroperoxide^a

"General reaction conditions. The catalyst $(13-30 \text{ mg}, 0.05 \text{ mol per mole of 2a})$ and a 70% aqueous Bu'OOH solution $(0.41-1.03 \text{ g}, 2-5 \text{ mol per mole of 2a})$ of 2a) were added to a solution of diketone 2a (0.3 g, 1.58 mmol) in CH₃CN (5 mL). The reaction mixture was refluxed for 0.25-2 h (the temperature of the reaction mixture was 79–81 °C). The reaction was performed with the use of 0.02 mol of Cu(ClO₄)₂ \cdot 6H₂O per mole of 2a. ^cThe temperature of the reaction mixture was 58-60 °C.

	OEt $EtO_{\sim}\sim$ C $Cu(CIO4)2 * 6H2O$ Ph. Phi ററ HOO $+$ Solvent EtO EtO				
entry	3a moles t -BuOOH per mole $3a$	moles catalyst per mole 3a	6a reaction time, h	conv of $3a$, %	vield of $6a$, $\%$
		0 ¹ 0.2		43 62	32
		0.3			41 65
		0.3		99	42
		0.4		98	59
		0.4		98	67
		0.5	(0.5)	98	59
	"General reaction conditions. The catalyst Cu(ClO ₄) ₂ ×6H ₂ O (0.1–0.5 mol per mole of 3a) and a 70% aqueous Bu'OOH solution (2–5 mol per mole of 3a) were added to a solution of diester 3a (0.3 g, 1.2 mmol) in CH ₃ CN (5 mL). The reaction mixture was refluxed for $0.5-2 h$ (the temperature of the				

reaction mixture was 79-81°C).

compound catalyzed by $Cu(CIO₄)₂·6H₂O$, which was proved to be the best catalyst for the reactions of keto ester 1a and diketone 2a (Table 3), afforded diethyl α -benzyl- α -tert-butylmalonate 6a.

In entries $1-7$, it was shown that the virtually complete conversion of diester 3a can be achieved with the use of a 5-fold molar excess of tert-butyl hydroperoxide in the presence of the catalyst $(30-50 \text{ mol } \%)$, which is substantially higher compared to the reactions of keto ester 1a and diketone 2a.

Therefore, a comparison of the reactions of three dicarbonyl compounds 1a, 2a, and 3a under analogous conditions showed that the keto ester gave the target peroxide 4a in the highest yield (90%), the peroxidation of the diketone resulted in a lower yield $(5a, 73\%)$, whereas the reaction of the diester produced peroxide 6a in the lowest yield (67%). The complete conversion of diketone 2a is achieved most rapidly (15 min), whereas 1 h is required for the complete conversion of keto ester 1a and diester 3a.

With the aim of evaluating the scope of the peroxidation with respect to other dicarbonyl compounds and preparing previously unknown compounds, we synthesized peroxides 4-6 under the optimized reaction conditions (Table 4).

On the basis of the results of the synthesis of structurally different peroxides in 37-90% yields, it could be expected that the above-described method for the peroxidation can be extended to other α -substituted β -dicarbonyl compounds.

Proposed Reaction Mechanism. Taking into account the data published in the literature,²⁰ it can be suggested that the peroxidation of $β$ -dicarbonyl compounds **I** occurs according to Scheme 2 (as exemplified by the use of copper salts as the catalyst). In step A, β -dicarbonyl compound I and Cu^{II} give complex II , which reacts with the Bu'OO radical (step B) to form the target peroxide III and Cu^I . In step C, monovalent copper is oxidized by tert-butyl hydroperoxide to give Cu^H and the Bu'O radical, which abstracts hydrogen from the tert-butyl hydroperoxide molecule (step **D**) to form the Bu^tOO radical (or its complex with metal), $10b,11b,21$ which is consumed in the step **B**. The Bu^tOO radical can also be generated in the process \vec{E} , according to which Cu^H (as a salt or complex II with a dicarbonyl

compound) oxidizes Bu'OOH to the Bu'OO radical (which is consumed in step \bf{B}) to form monovalent copper.^{10a,g,14}

The possibility that the reaction occurs through step **B** (the transformation of \mathbf{II} into \mathbf{III}) was confirmed experimentally (see Supporting Information). Thus, the copper complex, which was prepared from α -benzylacetylacetone $2a$ according to a known method, 22 was subjected to peroxidation, resulting in the formation of peroxide 5a in 44% yield. This experiment, as well as another experiment with the use of the copper complex of α -benzylacetylacetone in catalytic amounts (5 mol %, the conversion of 2a was 63%, the yield of 5a was 23%, see Supporting Information), partially confirmed step E , according to which complex Π oxidizes tert-butyl hydroperoxide to the Bu'OO radical.

Apparently, the efficiency of the catalyst $Cu(CIO₄)₂$ (like that of $Cu(BF_4)_2$) in the peroxidation is determined primarily by a combination of three factors. First, copper(II) perchlorate can be involved in the reaction with β -dicarbonyl compounds to form complexes.23,24 As a result, the reaction mixture contains, in addition to the starting diketone I and $Cu(CIO₄)₂$, complex II. Second, $Cu(CIO₄)$ ₂ acts as a strong oxidant in acetonitrile;²⁵ this salt is a stronger oxidant compared to Cu- $(NO₃)₂$ and CuCl₂.²⁶ As a result of this property, Cu(ClO₄)₂ rapidly oxidizes tert-butyl hydroperoxide to the Bu^tOO radical. Third, the efficiency of $Cu(CIO₄)₂$ as the catalyst is manifested in that monovalent copper that is generated (apparently, as CuClO4) in the step B readily forms the complex with acetonitrile of composition CuClO₄ \cdot 4CH₃CN, ²⁷ which is relatively easily oxidized by tert-butyl hydroperoxide to divalent copper (step C), thus providing its regeneration.

As for the reaction mechanism of peroxidation, it should be noted that the reactions with unsubstituted acetylacetone, acetoacetic ester, and malonic ester afford complex mixtures of products. This is attributed to the fact that compound III containing the hydrogen atom and the Bu'OO group in the

(27) (a) Senne, J. K.; Kratochvil, B. Anal. Chem. 1971, 43, 79-82. (b) Persson, I.; Penner-Hahn, J. E.; Hodgson, K. O. Inorg. Chem. 1993, 32, 2497-2501.

^{(21) (}a) Minisci, F.; Fontana, F.; Araneo, S.; Recupero, F.; Zhao, L. Synlett 1996, 119-125. (b) Avila, D. V.; Ingold, K. U.; Lusztyk, J.; Green, W. H.; Procopio, D. R. J. Am. Chem. Soc. 1995, 117, 2929-2930. (c) Paul, H.; Small, R. D.; Scaiano, J. C. J. Am. Chem. Soc. 1978, 100, 4520-4527. (d) Barton, D. H. R.; Le Gloahec, V. N.; Patin, H.; Launay, F. New J. Chem. 1998, 559-563.

⁽²²⁾ Dryden, R.; Winston, A. J. Org. Chem. 1958, 62, 635-637.

⁽²³⁾ El-Ayaan, U.; El-Metwally, N. M.; Youssef, M. M.; El Bialy, S. A. A. Spectr. Acta Part A 2007, 68, 1278–1286.

⁽²⁴⁾ Sekine, T.; Inaba, K.; Morimoto, T. Anal. Sci. 1986, 2, 535-540. (25) (a) Kratochvil, B.; Zatko, D. A.; Markuszewski, R. Anal. Chem. 1966, 38, 770–772. (b) Kratochvil, B.; Quirk, P. F. Anal. Chem. 1970, 42, 492–495.

⁽c) Mruthyunjaya, H. C.; Murthy, A. R. V. Indian J. Chem. 1969, 7, 403–406.

⁽²⁶⁾ Mruthyunjaya, H. C.; Murthy, A. R. V. Indian J. Chem. 1973, 11, 481–484.

JOCArticle Terent'ev et al.

TABLE 4. Structures and Yields of Peroxides $4-6$ Derived from β -Dicarbonyl Compounds $1-3$

 a A 70% aqueous Bu' ["]A 70% aqueous Bu'OOH solution (2 mol per mole of 1) was added to a solution of ethyl 2-substituted-3-oxobutanoates 1 (0.3 g) and Cu(ClO₄)₂.
6H₂O (0.1 mol per mole of 1) in CH₃CN (5 mL). The reaction mixture was mole of 2) was added to a solution of 3-substituted-2,4-dione 2 (0.3 g) and catalyst Cu(ClO₄₎₂ \cdot 6H₂O (0.05 mol per mole of 2) in CH₃CN (5 mL). The reaction mixture was refluxed at 79–81 °C for 15 min. "A 70% aqueous Bu'OOH solution (5 mol per mole of 3) was added to a solution of diethyl 2-substituted malonate 3 (0.3 g) and catalyst Cu(ClO₄₎₂ \cdot 6H₂O (0.4 mol per mole of 3) in CH₃CN (5 mL). The reaction mixture was refluxed at 79–81 °C for 1 h. ^dThe experiments on the synthesis of 4a and $\overline{5g}$ were scaled up to 10 times larger amounts of the reactants.

 α position apparently gives complex $\mathbf{I}(\mathbf{R}=\mathbf{B}\mathbf{u}'\mathbf{O}\mathbf{O})$ containing the unstable vinyl peroxide moiety, as well as to the fact that the second Bu'OO group can be incorporated into the molecule to form diperoxides unstable under the reaction conditions.

It is possible that the target peroxides are generated in insignificant amounts according to the mechanism of recombination of the following radicals: the Bu'OO radical (or its complex with metal) and the C-centered radical, which is formed through the abstraction of hydrogen from the α -CH fragment of β -dicarbonyl compounds by the Bu'OO and Bu^TO radicals^{9a,10d,11b,13,28} or through the oxidation of the

dicarbonyl compounds by metal ions.²⁹ However, the recombination of the radicals is unlikely because the dimers of dicarbonyl compounds, which are generally formed by the radical coupling of two C-centered radicals, were not detected,³⁰ and the peroxidation of α -allylacetylacetone 2h was not accompanied by its oligomerization. In the experiment on the peroxidation of α -benzylacetoacetic ester 1a in the presence of a 5-fold molar excess of allyl acetate, the formation of the product of the radical addition at the $C=C$ bond was not observed; the target peroxide 4a was obtained in 86% yield (the experiment is described in Supporting Information). It should be noted that the radical addition of ketones to compounds containing the double bond are well-known and are typical of C-centered radicals generated from ketones.³¹

⁽²⁸⁾ Kochi, J. K. Tetrahedron 1962, 18, 483–497.

^{(29) (}a) Citterio, A.; Santi, R.; Fiorani, T.; Strologo, S. J. Org. Chem. 1989, 54, 2703–2712. (b) Santi, R.; Bergamini, F.; Citterio, A.; Sebastiano, R.; Nicolini, M. J. Org. Chem. 1992, 57, 4250–4255.

^{(30) (}a) Iqbal, J.; Bhatia, B.; Nayyar, N. K. Chem. Rev. 1994, 94, 519–564. (b) Snider, B. B. Chem. Rev. 1996, 96, 339–363. (c) Liu, Y. C.; Romero, J. R. Tetrahedron Lett. 1995, 36, 8757–8760. (d) Bukhtiarov, A. V.; Golyshin, V. N.; Tomilov, A. P.; Kuz'min, O. V. J. Gen. Chem. USSR (Engl. Transl.) 1988, 58, 139–146.; Zh. Obshch. Khim. 1988, 58, 157-165. (e) Vessels, J. T.; Janicki, S. Z.; Petillo, P. A. Org. Lett. 2000, 2, 73–76.

^{(31) (}a) Vinogradov, M. V.; Verenchikiov, S. P.; Nikishin, G. I. Izv. Akad. Nauk. SSSR, Ser. Khim. 1971, 200–201. (b) Snider, B. B.; Kwon, T. J. Org. Chem. 1990, 55, 1965-1968. (c) Caliskan, R; Pekel, T.; Watson, W. H.; Balci, M. Tetrahedron Lett. 2005, 46, 6227–6230. (d) Nair, V.; Mathew, J.; Prabhakaran, J. Chem. Soc. Rev. 1997, 127–132. (e) Ogibin, Yu. N.; Terent'ev, A. O.; Ananikov, V. P.; Nikishin, G. I. Russ. Chem. Bull., Int. Ed. 2001, 50, 2149–2155. (f) Hirase, K.; Iwahama, T.; Sakaguchi, S.; Ishii, Y. J. Org. Chem. 2002, 67, 970-973.

SCHEME 2. Proposed Reaction Mechanism of Peroxidation of β-Dicarbonyl Compounds Exemplified by the Use of Copper Salts As the Catalyst

Establishment of the Structures of the Peroxides. Peroxides $4a-c,e-f, 5b,d,e,g,h,$ and $6e,g,h$ are liquids. Peroxides $4d, 5a$, b, and 6a are solid compounds with mp varying from 34 to 36 °C (5a) to $109-110 \text{ °C}$ (5b). The structures of these compounds were established by ${}^{1}H$ and ${}^{13}C$ NMR spectroscopy, mass spectrometry, and elemental analysis. The ¹³C NMR spectra show characteristic signals for the carbon atoms of the COOC(CH₃)₃ fragment at δ 85.41-97.16, 80.37- 81.79, and 26.19-26.69. The retention of the characteristic signals of the C=O group at δ 165.86-206.92 is important evidence that this group remains intact in the reaction with tert-butyl hydroperoxide. In the ¹H NMR spectra, the absence of the signal for the hydrogen atom of the α -CH fragment and the presence of the signals of the CH₃CO (δ 1.89– 2.24) and $C(CH₃)₃$ (δ 1.23-1.33) groups are the most characteristic data.

A reliable proof of the structures of organic peroxides, even despite the NMR spectroscopic and elemental analysis data, is generally a difficult problem. Hence, to determine with certainty the structures of the peroxides, the structure of compound 5b was established by X-ray diffraction study (the molecular structure of **5b** is shown in Supporting Information), which confirmed the structures of these compounds.

Conclusion

Transition metal (Cu, Fe, Mn, Co) salts were found to catalyze the peroxidation of α-substituted β-dicarbonyl compounds at the α position by *tert*-butyl hydroperoxide. On the basis of this reaction, we developed a selective and experimentally convenient method for the synthesis of α-tert-butylperoxy-β-dicarbonyl compounds. The synthesis is easily scaled without a decrease in the yield of the target peroxides, which can be prepared in gram amounts. The reactions are performed in acetonitrile with the use of 5-40 mol % of the catalyst $(Cu(CIO₄)₂$ is the catalyst of choice) and an aqueous solution of tert-butyl hydroperoxide $(2-3 \text{ mol per mole of a } \beta$ -dicarbonyl compound). The reaction is suitable for structurally different α -substituted β-dicarbonyl compounds. The target peroxides are obtained in the highest yields (up to 90%) from $β$ -keto esters and in somewhat lower yields from β -diketones (up to 75%) and malonates (up to 69%).

Experimental Section

Caution: Although we have encountered no difficulties in working with peroxides, precautions, such as the use of shields, fume hoods, and the avoidance of transition metal salts, heating, and shaking, should be taken whenever possible.

Synthesis of Ethyl 2-Benzyl-2-(tert-butylperoxy)-3-oxobutanoate 4a (entry 13, Table 1). A 70% aqueous Bu'OOH solution (0.35 g, 2.72 mmol, 2 mol per mole of 1a) was added to a solution of 2-benzyl-3-oxobutanoate 1a (0.3 g, 1.36 mmol) and Cu(ClO₄)₂ \cdot 6H₂O (0.05 g, 0.136 mmol, 0.1 mol per mole of 1a) in CH₃CN (5 mL). The reaction mixture was refluxed at 79-81 °C for 1 h, cooled to $20-25$ °C, poured into water (40 mL), stirred, and extracted with CH_2Cl_2 (3 \times 10 mL). The combined extracts were washed with water (3×10 mL), dried over Na₂SO₄, and filtered. The filtrate was evaporated using a water-jet vacuum pump. The residue was chromatographed using a petroleum ether-ethyl acetate system with an increase in the fraction of the latter solvent from 0 to 20% . Product 4a was obtained in 90% yield (0.38 g, 1.23) mmol). Colorless oil. $R_f = 0.68$ (TLC, hexane-ethyl acetate, 5:1). ¹H NMR (300.13 MHz, CDCl₃), δ : 1.21 (t, 3H, $J = 7.3$ Hz), 1.30 (s, 9H), 1.89 (s, 3H), 3.44 (dd, 2H, J= 13.9, 69.7 Hz), 4.10-4.23 (m, 2H), 7.16-7.26 (m, 5H). 13C NMR (75.48 MHz, CDCl3), δ: 13.8, 26.5, 27.0, 37.1, 61.5, 81.0, 92.6, 126.6, 127.9, 130.6, 134.9, 167.5, 203.4. Anal. Calcd for C₁₇H₂₄O₅: C, 66.21; H, 7.84. Found: C, 66.32; H, 7.89.

Synthesis of 3-Benzyl-3-(tert-butylperoxy)pentane-2,4-dione 5a (entry 6, Table 2). A 70% aqueous Bu'OOH solution (0.61 g, 4.74 mmol, 3 mol per mole of **2a**) was added to a solution of 3-benzylpentane-2,4-dione **2a** (0.3 g, 1.58 mmol) and Cu(ClO₄). $6H_2O$ (0.03 g, 0.08 mmol, 0.05 mol per mole of 2a) in CH₃CN (5 mL) . The reaction mixture was refluxed at 79–81 °C for 15 min, cooled to $20-25$ °C, poured into water (40 mL), stirred, and extracted with CH₂Cl₂ (3 \times 10 mL). The isolation was carried out as described in entry 13, Table 1. Product 5a was obtained in 73% yield (0.32 g, 1.15 mmol). Yellowish crystals. Mp = 34-36 °C. R_f = 0.74 (TLC, hexane-ethyl acetate, 10:1). ¹H NMR (300.13 MHz, CDCl3), δ: 1.33 (s, 9H), 1.98 (s, 6H), 3.36 (s, 2H), 7.14-7.27 (m, 5H). ¹³C NMR (75.48 MHz, CDCl₃), δ: 26.6, 27.2, 37.1, 81.3, 97.0, 126.7, 128.0, 130.5, 135.0, 203.3. Anal. Calcd for C₁₆H₂₂O₄: C, 69.04; H, 7.97. Found: C, 69.10; H, 7.94.

Synthesis of Diethyl 2-Benzyl-2-(tert-butylperoxy)malonate 6a (entry 6, Table 3). A 70% aqueous Bu'OOH solution (0.77 g, 6 mmol, 5 mol per mole of 3a) was added to a solution of diethyl 2-benzylmalonate 3a (0.3 g, 1.2 mmol) and $Cu(CIO₄)₂ \cdot 6H₂O$ $(0.178 \text{ g}, 0.48 \text{ mmol}, 0.4 \text{ mol per mole of 3a})$ in CH₃CN (5 mL). The reaction mixture was refluxed at $79-81$ °C for 1 h, cooled to $20-25$ °C, poured into water (40 mL), stirred, and extracted with CH_2Cl_2 (3 \times 10 mL). The isolation was carried out as described in entry 13, Table 1. Product 6a was obtained in 67% yield (0.27 g, 0.8 mmol). White crystals. Mp = 44-45 °C. R_f = 0.37 (TLC, hexane-ethyl acetate, 10:1). ¹H NMR (300.13 MHz, CDCl₃), δ : 1.20 (t, 6H, $J = 7.3$ Hz), 1.29 (s, 9H), 3.50 (s, 2H), 4.11-4.21 (m, 4H), 7.14-7.28 (m, 5H). ¹³C NMR (75.48 MHz, CDCl3), δ: 13.9, 26.5, 37.8, 61.6, 81.0, 87.9, 126.8, 127.9, 130.3, 134.9, 166.9. Anal. Calcd for $C_{18}H_{26}O_6$: C, 63.89; H, 7.74. Found: C, 63.76; H, 7.84.

Acknowledgment. This work is supported by the Program for Support of Leading Scientific Schools of the Russian Federation (Grant NSh 4945.2010.3).

Supporting Information Available: Experimental procedures for the synthesis of $4a-f$, $5a,b,d,e,g,h$, and $6a,e,f,h$, their ¹H and ¹³C NMR spectra, and details of X-ray data for 5b, including CIF file. This material is available free of charge via the Internet at http://pubs.acs.org.